ABSTRACT
The most widespread ailments in dogs are urinary tract infections (UTIs) caused by bacterial species. It is necessary to recognize the prevailing bacterial pathogens and their susceptibility to antimicrobial agents to effectively treat UTIs. The present study aimed to classify the bacterial organism that causes UTIs in dogs and their patterns of antimicrobial resistance. A total of 141 urine samples were collected from diseased dogs in Veterinary Clinical Complex LUVAS in Hisar, India. Culture, biochemical and sensitivity testing were performed for each of the urine samples based on standard method. Of the total 141 urine samples from dogs, 21 (14.9%) isolates were identified as Klebsiella spp. The isolates were found to be highly resistant to ampicillin (100%), penicillin G (100%), oxytetracycline (100%), enrofloxacin (85.7%), chloramphenicol (80.6%), ceftriaxone (76.2%) and cloxacillin (71.4%), while susceptibility was observed against gentamicin (100%), amikacin (100%) and neomycin (90.5%). In the current study, 19 out of 21 identified isolates were found to be multidrug-resistant. This study indicates that dogs in the study area are found to harbor highly resistant Klebsiella spp. Therefore, when deciding on the antibiotic regimen for UTIs cases, Vets should consider resistance profile of chosen antibacterial agents before usage in order to discourage dissemination of resistant organisms in the study area.

Keywords: Klebsiella spp, Urinary tract infection, dog, Multidrug-resistant

*Corresponding author:
email:tanimuzimbos@gmail.com
Tel: +234-803 550 2325
INTRODUCTION
Urinary tract infections (UTIs) are frequently observed in pets and humans and most often require antimicrobial therapy [1, 2]. UTIs in pets and humans might also be caused by Klebsiella spp, although mostly less common than Escherichia coli [2, 3]. Hence, infection with one single bacterial species has become more common than mixed infections [4]. Klebsiella spp is a leading pathogen of nosocomial infections, as well as UTIs which are often responsible for resistance [5]. Bacteriological culture, especially in combination with the antibiotic susceptibility test, has become an essential part of diagnosis of UTIs and the best tool for initiating therapeutic decisions for individual dogs [6, 7]. Periodic testing of susceptibility trends of organisms isolated from UTIs is the first-line of effective therapy of choice, and it can also be used to track the presence of resistant organisms. Rising antibiotic resistance in canines is of concern as it significantly affects dog treatment, which leads to medication failure, increase in high morbidity, mortality, and UTIs management cost. Moreover, it is indeed a public health issue for zoonotic diseases [6, 9]. The milestones of UTIs therapy are antimicrobials yet many patients with recurrent UTIs are poorly treated with multiple antimicrobial agents, thus potentiating the resistance of the microorganisms. If clinical symptoms are present or even not, lower urinary tract disorder, urolithiasis, prostatitis, pyelonephritis, or septicemia following the renal failure are the consequences of untreated UTIs [10].

Thorough pre-treatment diagnosis and antimicrobial sensitivity of bacterial pathogens can help to select relevant and cost-effective antibiotics to treat the infected animal in a timely and adequate manner. The aim of the present study, was to isolate and identify multidrug-resistant isolates of uropathogenic Klebsiella spp in dogs within the study area.

MATERIALS AND METHODS

Study Area
The current study was conducted in Hisar, Haryana State of India. The studied area is the administrative headquarters of Hisar district of Hisar division in the state of Haryana in northwestern India [Figure 1]. Hisar district lies between 28 53 45N and 29 34 50 N latitude and between 75 19 44 E and 76 18 15 E longitude. It has a geographical area of 3,983.00 square kilometers comprising 3,835.53 square kilometers of rural area and 147.47 square kilometers of urban area [19].

HARYANA

Figure 1: Map of Haryana State indicating Hisar (Red Arrow); Source: Google map

Study design
The present study employed a cross sectional study design to assess dogs with UTIs in clinics of Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS) Hisar Haryana, India.

Sample collection
Urine samples were collected by cystocentesis from 141 dogs who were diagnosed with UTIs in clinics of Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS) Hisar Haryana, India.
Bacterial Isolation and Identification
The urine samples were inoculated and streaked onto MacConkey agar (MA) plates (HiMedia, Mumbai, India). The plates were incubated aerobically at 37°C for 24-48 hours till adequate growth was observed. Suspected colonies were picked for further analysis of the pure culture of *Klebsiella* spp using standard microbiological techniques of colony identification which involved gram staining and biochemical tests (Indole, Methyl Red, Voges Proskauer, Citrates tests) using commercially available KB010 HiE.Coli™ Identification Kit (HiMedia Mumbai, India) following the manufacturer's instructions.

Antimicrobial Susceptibility Testing
The Antimicrobial susceptibility testing was determined according to the method of Bauer-Kirby [11], by using a commercially prepared disc (HiMedia Mumbai, India) with the known concentration of antibiotics. A small amount of test culture was transferred into a tube of brain heart infusion (BHI) broth using a platinum loop and incubated for 2-5 hours at 37°C to obtain turbidity. The broth culture was then uniformly distributed over the surface of Mueller-Hinton agar plates with the aid of a sterile cotton swab. The antimicrobial discs were gently pressed onto the agar with a sterile forceps to ensure uniform close contact with the medium. This were then incubated for 24 hours at 37°C. A zone of inhibition was measured and interpreted as sensitive (S), intermediate (I), and resistant (R) according to the interpretation chart provided by the manufacturer.

The antibiotics tested were ampicillin (AMP) 10mcg, Enrofloxacin (EN) 10mcg, amikacin (AK) 30mcg, ceftriaxone (CRT) 10mcg, gentamycin (GEN) 30mcg, Neomycin (N) 30mcg, Cloxacillin (COX) 1mcg, Chloramphenicol (C) 25mcg Penicillin G (P) 10 units and Oxytetracycline (O) 30mcg (HiMedia, Mumbai, India).

Data analysis
The data was analyzed using descriptive statistics with JMP Version 11(SAS, Inc. NC, USA).

RESULTS

Bacterial Isolates Confirmation
Bacterial isolates were identified using morphological and biochemical tests, which confirmed the presence of gram-negative bacteria. Out of a total of 141 samples of urine collected from dogs, 21 (14.9%) of the samples yielded positive growth of the species *Klebsiella*.

Biochemical Test
Biochemical (IMViC) test for *Klebsiella* spp indicated Indole negative, Methyl-Red negative, Voges-Proskauer test positive and Citrate test positive as presented in table 1.

Antibiotic Susceptibility Test
The isolated *Klebsiella* were more resistant to ampicillin (100%), penicillin (100%), oxytetracycline (100%), enrofloxacin (85.7%), chloramphenicol (80.6%), ceftriaxone (76.2%), and cloxacillin (71.4%), while susceptibility was observed against gentamicin (100%), amikacin (100%) and neomycin (90.5%) as illustrated in Table 2.

In the current study, 19 out of 21 identified isolates were found to be multidrug-resistant as indicated in Table 3.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole</td>
<td>Negative</td>
</tr>
<tr>
<td>Methyl-Red</td>
<td>Negative</td>
</tr>
<tr>
<td>Voges-Proskauer test</td>
<td>Positive</td>
</tr>
<tr>
<td>Citrate test</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Table 2: Antimicrobial susceptibility of *Klebsiella* spp isolates from the urine of dogs

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Number of Susceptible Klebsiella spp (%)</th>
<th>Number of Intermediate Klebsiella spp (%)</th>
<th>Number of Resistant Klebsiella spp (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>1 (4.8)</td>
<td>5 (23.8)</td>
<td>15 (71.4)</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>0 (0.0)</td>
<td>3 (14.3)</td>
<td>18 (85.7)</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>21 (100)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Amikacin</td>
<td>21 (100)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Neomycin</td>
<td>19 (90.5)</td>
<td>0 (0.0)</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Amphenicols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>2 (9.5)</td>
<td>2 (9.5)</td>
<td>17 (80.6)</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>4 (19.0)</td>
<td>1 (4.8)</td>
<td>16 (76.2)</td>
</tr>
</tbody>
</table>

Table 3: Distribution of Multidrug-resistant among the *Klebsiella* isolates

<table>
<thead>
<tr>
<th>Number of Isolates</th>
<th>Resistance Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>O, AMP, C, CRT</td>
</tr>
<tr>
<td>3</td>
<td>O, AMP, P, EN, N, CRT</td>
</tr>
<tr>
<td>5</td>
<td>EN, P, AMP, N, COX</td>
</tr>
<tr>
<td>9</td>
<td>EN, O, AMP, C, P, COX, N</td>
</tr>
</tbody>
</table>

AMP, Ampicillin; C, Chloramphenicol; EN, Enrofloxacin; O, Oxytetracycline; CRT, Ceftriaxone; N, Neomycin; COX, Cloxacillin; P, Penicillin G
DISCUSSION

In the present study, the most common infectious disease in dogs was urinary tract infections (UTIs) caused by *Klebsiella* organisms. Although, it is more often seen in older dogs in the present study. These findings were in accord with the study carried out by [2, 3].

In the present study, the prevalence of *Klebsiella* spp isolated and identified as the organism responsible for the UTIs infections was high. This was probably due to the higher number of urine samples collected from the study area. However, Punia *et al*. [12] reported a lower prevalence of *Klebsiella* organism from 35 dogs in urine samples. This could be due to the lower number of samples used in her study. The current finding concurs with the study of Liu *et al*. [13] who detected higher number of *Klebsiella* spp in 285 urine samples from dogs with symptoms of UTIs. Additionally, Cetin *et al*. [14] reported that *Klebsiella* spp were cultured from 51 urine samples of dogs with UTIs. Whereas, Robert *et al*. [15] also isolated *Klebsiella* spp from urine specimens of dogs suffering from UTIs. This could be due to the frequency of contacts amongst dogs in the respective study areas.

In the current study, and other research works showed that the vast majority of canine UTIs are caused by a single bacterial species. However, different microorganisms could be involved in the etiology of UTIs in dogs. Punia *et al*. [12] reported that infection with a single organism was found in 2 dogs with bacteriuria and with more than one organism in 5 dogs. In another study, Cetin *et al*. [14] studied urinary tract infections in 100 dogs and mixed infections were detected in 9 dogs. Furthermore, Ling *et al*. [4] reported that infection with a single microbial species was responsible for 72% of UTIs in both sexes. Diagnosis and treatment of bacterial diseases are an integral part of the practice of small animal medicine, where in-vitro antibiotic sensitivity testing of bacterial strains is a necessary tool for the treatment of bacterial infections.

The antibiotic resistance pattern of *Klebsiella* spp observed in the current study showed high resistance to ampicillin, penicillin, oxytetracycline, enrofloxacin, chloramphenicol, ceftriaxone, and cloxacillin which is in accordance with the finding of Punia *et al*. [12] and Windahl *et al*. [16]. The isolate's resistance to penicillin can be due to the development of an antibiotic-destroying β-lactamase enzyme. On the other hand, however, overuse and misuse of this antibiotic to treat various disease conditions in dogs can induce a mutation and transformation of microorganisms. The findings of the present study, indicate an increase in the amount of induced resistance and the potential spread of multidrug-resistant bacteria strains in the study area.

In the current study, *Klebsiella* spp demonstrated strong susceptibility to gentamicin, amikacin, and neomycin. This finding correlates with those other previous studies [12, 14, 17]. Similarly, Kogita *et al*. [18] reported high susceptibility of *Klebsiella* spp to these antibiotics which is consistent with the findings of the present study. Furthermore, the results of the present study vary with that of Liu *et al*. [13] who reported high resistance to aminoglycoside. This is due to the nephrotoxic nature, and the susceptibility of *Klebsiella* organisms to aminoglycoside and this could be attributed to the lower use of these antibiotics.

In the present study, 19 out of 21 *Klebsiella* spp were seen to be multi-drug resistant. This was buttressed by the work of Punia *et al*. [12] who reported that all the 22 isolates were multidrug-resistant. These variable susceptibilities of the multiple antimicrobial agents against *Klebsiella* isolates showed that the antimicrobial agent should indeed be chosen on the basis of bacterial culture and antimicrobial susceptibility test results and the clinical reaction to the antibiotic.

Conclusion

The current study revealed that *Klebsiella* spp...
isolated from the urine of dogs with UTIs were highly resistant to tetracyclines, penicillins, fluoroquinolones, cephalosporins, and macrolides. However, they were highly susceptible to aminoglycosides. Therefore, when deciding on the antibiotic regimen for UTIs cases, vets should consider the choice of the most potent antibacterial agent to control the phenomenon of resistance.

Acknowledgment
The Indian Council for Cultural Relations (Ministry of External Affairs, Government of India) provided funding for this study.

Competing interests
There are no potential conflicts of interest declared by the authors.

REFERENCES

clinical cases of urinary tract infection in dogs and their antibiogram, *Veterinary World.*, 11 (8): 1037-1042.

